SageMaker
—Table of Contents—
SageMaker Processing
Local Mode
If arguments
is provided, entrypoint
is required, although aws mentioned it is not.
processor = Processor(
...
entrypoint=["python3", "evaluation.py"]
)
processor.run(
arguments=[
"--onnx_filename", "xxxx.onnx",
],
...
)
ProcessingOutput
For source in processing output, you cannot specify a file, but only directory
SageMaker Experiment
download experiment result
import pandas as pd
from sagemaker.analytics import ExperimentAnalytics
def save_experiment_df(experiment_name: str) -> pd.DataFrame:
trial_component_analytics = ExperimentAnalytics(
experiment_name=experiment_name,
input_artifact_names=[]
)
df = trial_component_analytics.dataframe()
df.to_csv(f"experiment-{experiment_name}.csv")
return
if __name__ == "__main__":
save_experiment_df("tune-features-20220324")
SageMaker Neo
“Amazon SageMaker Neo enables developers to optimize machine learning (ML) models for inference on SageMaker in the cloud and supported devices at the edge” … “Amazon SageMaker Neo automatically optimizes machine learning models to perform up to 25x faster with no loss in accuracy. SageMaker Neo uses the tool chain best suited for your model and target hardware platform while providing a simple standard API for model compilation”